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ABSTRACT
NK models provide a family of tunably rugged fitness land-
scapes used in a wide range of evolutionary computation
studies. It is well known that the average height of local op-
tima regresses to the mean of the landscape with increasing
epistasis, K. This fact has been confirmed using both theo-
retical studies of landscape structure and empirical studies
of evolutionary search. We show that the global optimum
behaves quite differently: the expected value of the global
maximum is highest in the maximally rugged case. Fur-
thermore, we demonstrate that this expected value increases
with K, despite the fact that the average fitness of the local
optima decreases. That is, the highest peaks are found in
the most rugged landscapes, scattered amongst masses of
low-lying peaks. We find the asymptotic value of the global
optimum as N approaches infinity for both the smooth and
maximally rugged cases. In evolutionary search, the optima
that are found reflect the local optima that exist in the land-
scape, the size of these optima – which corresponds to the
size of their basins of attraction, and the effort expended
in the search process. Increasing the level of epistasis in an
NK landscape stochastically introduces higher peaks, but
renders them exponentially more difficult to find.

Categories and Subject Descriptors: I.6.5 [Model De-
velopment]: Modeling Methodologies

General Terms: Experimentation.

Keywords: NK landscapes, rugged landscapes, combina-
torial landscapes, search, optimisation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’05, June 25–29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006 ...$5.00.

1. THE NK FITNESS LANDSCAPE
The NK landscape model was designed to develop in-

tuitions about the structure of complex combinatorial fit-
ness landscapes [7, 9]. Over the last fifteen years, the NK
model has become an important tool for modelling biological
systems that incorporate combinatorial interactions, such
as the evolution of gene networks [8] and the development
of the immune system [10]. The NK landscape has also
been widely used by the evolutionary computation com-
munity as a generator of epistatic landscapes that serve as
important test functions for search and optimisation tech-
niques [4,6,14].
An NK system is defined by two parameters, N , the num-

ber of components and K, the number of epistatic interac-
tions between components. Each component has a binary
value so an NK system can be represented by a bit string
of length N in which the bit at locus i marks the value of
component i. Each locus makes a contribution to the total
fitness of the system based on K+1 values: its own and those
of the K components to which it is linked. Each of the 2K+1

possible combinations of component values is mapped to an
independent, uniformly distributed fitness contribution in
the range [0, 1] (Figure 1). The total fitness of a system is
the average of the N fitness contributions. Epistatic inter-
actions can either be allowed between random loci, or, as is
this case in this study, restricted to adjacent loci.
Fitness landscapes can be explored through both mathe-

matical analysis and empirical simulation. One of the sim-
plest empirical techniques used to explore landscapes is an
adaptive walk [9]. A large number of adaptive walks per-
formed on a single landscape gives an estimate of the num-
ber of local optima in the landscape as well as their fitness
values and the probability of reaching them from an arbi-
trary starting point. The set of starting points from which
a given optimum can be reached is known as its basin of
attraction. In general, a larger basin of attraction makes an
optimum easier to find. Because certain optima may have
larger basins of attraction than others, adaptive walks give a
biased description of the optima in a landscape and are not
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0 0 0   0.34
0 0 1   0.29
0 1 0   0.83
0 1 1   0.12

Figure 1: An NK system with N = 8 and K = 2.
Epistatic interactions are shown for the third locus,
whose fitness contribution is 0.83. The boundary of
the bit string representation is periodic; that is, the
leftmost and rightmost loci are neighbours.

always guaranteed to find the global optimum. Note that,
throughout this paper, the convention is that the optima
of interest are maxima, rather than minima. The methods
used apply to minima with only trivial modifications.
Landscapes generated using the NK model vary in size

according to N and in correlation according to K. When
K = 0 there are no interactions between loci and the re-
sulting fitness landscape is smooth, containing only a single
optimum. In this case all points in the landscape lie in the
basin of attraction of the global optimum, making it triv-
ially easy to find. As the number of interactions between
loci increases, the number of local optima increases and the
resulting landscape becomes more ‘rugged’. The basin of
attraction of each optimum (including the global optimum)
decreases in size and the landscape becomes increasingly dif-
ficult to search. When the landscape is ‘maximally rugged’
(i.e., when K = N − 1), the expected number of optima
is O(2N/N) [17]. Any given starting point will be in the
basin of attraction of only a small fraction of the optima,
and only a small fraction of starting points will be in the
basin of attraction of the global optimum.
When K > 0, it is not possible to maximise the fitness

contributions of all loci simultaneously as changes at any
locus will also affect the fitness contributions of K others.
The fitness of the global maximum is therefore typically less
than the sum of the maximum possible fitness of each locus.
Weinberger [17] shows that, with increasing K, the fitness
values of the many local optima asymptotically approach a
normal distribution with a mean that regresses towards the
landscape average. Previous research suggests that adaptive
walks attain their highest fitness values on landscapes with
a low level of ruggedness (around K = 2) [8,17].
While the behaviour of the average local optima and the

performance of adaptive walks are well-understood, many
properties of NK landscapes remain unexplored. In this pa-
per, we consider two in particular: the distribution of fitness
values across the entire landscape, and the behaviour of the
global optimum as a function of N and K.
Weinberger [16] concluded that the fitness of the global

optimum stays roughly constant as N becomes large and
gave bounds for the fitness of the global maximum in the
case of an uncorrelated (K = N − 1) landscape. More
recently, empirical studies [12, 13] propose that the global
minimum decreases as N increases (for N in the range 10
to 25) and also as ruggedness increases. Other mathemat-
ical analyses of the global optima [2, 3, 11] have employed
non-uniform fitness contributions in order to improve ana-

lytic tractability. These studies provide a number of useful
results but are not directly applicable to the typical case
of uniformly distributed fitness contributions used in most
applications of the NK landscape (e.g. [4, 8]).
In this study mathematical analysis and empirical simu-

lation were used to investigate the case where fitness contri-
butions are uniformly distributed on [0, 1]. In Section 2 the
distribution of fitness values is interpreted using the central
limit theorem. To clearly illustrate how an actual landscape
varies as N gets large, the behaviour of the global extrema,
which indicate the range of values in the landscape, is inves-
tigated. The asymptotic value of the global optimum of a
maximally rugged landscape as N → ∞ is then established
under the Gaussian approximation. The behaviour of the
global optimum has important implications for search, and
Section 3 reports the results of simulations investigating the
performance of adaptive walks as both number of searches
and ruggedness of the landscape increase.

2. LANDSCAPE STRUCTURE

2.1 Fitness distribution
In an NK landscape, the fitness of a point, W , is the

average of N fitness contributions, wi, each independently
distributed as U(0, 1) random variables,

W =
1

N

NX
i=1

wi. (1)

By the central limit theorem, the fitness of a point, W , con-
verges in distribution to a standard Gaussian random vari-
able when appropriately scaled:

W − 1
2q

1
12N

D−→ Normal (0, 1) as N → ∞. (2)

For suitably large values of N , we can therefore approxi-
mate the fitness of any single point on the landscape using a
random variable with a Gaussian distribution, with mean 1

2

and variance 1
12N

. This property holds for all K—the level
of epistasis is not relevant when considering the fitness of a
single point, ignoring the rest of the landscape. However,
epistatic interactions between loci are a critical feature of
NK models, because they induce correlations between the
fitnesses of different points on a given landscape.
The structure of the landscape is such that any two points

on the landscape will share fitness contributions if they have
identical values in a set of epistatically linked components.
Because such points share some fitness contributions, and all
other fitness contributions are mutually independent, the
fitness values of these points will be positively correlated.
When K is low, each possible fitness contribution appears
in a large proportion of the points in a landscape but as K
increases, the number of correlated points decreases. When
K = N − 1, no points have any fitness contributions in
common, so that the landscape consists of 2N independent
random variables.
When K = N − 1, the empirical fitness distribution of

a landscape approaches a Gaussian distribution with mean
1
2
and variance 1

12N
. However, if K < N − 1 then positive

correlations between points on a specific landscape will cause
its empirical fitness distribution to differ from the Gaussian
approximation. Because the variance is proportional to 1

N
,
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Figure 2: Gaussian approximations to the probabil-
ity density functions of the value of the global opti-
mum for N = 8, with K = 7 and K = 0, using (2) and
(4) respectively. The increased mean (and decreased
variance) of the global maximum for K = N − 1 over
K = 0 is clearly visible.

then as N increases, the variance of a fitness value decreases
and the landscape becomes flatter as values are clustered
more closely around the mean value of 1

2
. The behaviour of

the global extrema indicate how the range of fitness values
decreases as K decreases from N − 1 (Figure 2).

2.2 Behaviour of the global optimum
Suppose that Wmax(K) is the global maximum1 for an

NK landscape with a level of epistasis, K. For K = N −
1, the global maximum is the largest of 2N independent
random quantities, each a sum of N independent uniform
random variables, and we will denote it by Wmax(N − 1).
The probability density function of Wmax(N − 1) is

fWmax(N−1)(z) = 2NfW (z) (FW (z))2
N−1 , (3)

where fW (z) is the probability density function of the fitness
of a point, W , and FW (z) is the cumulative distribution
function of W .
Conversely, for K = 0 each locus has only 2 possible val-

ues (0 or 1), so the global maximum is the average of N
random variables, each of which is chosen as the largest of
two independent samples from U(0, 1). The maximum and
minimum of each pair have means of 2

3
and 1

3
, respectively,

and a common variance of 1
18
. Since each of the N maxima

(one from each pair) are independent, we can again use the
central limit theorem to see that the global maximum for
K = 0 converges in distribution as

Wmax(0)− 2
3q

1
18N

D−→ Normal(0, 1). (4)

The preceding equations can be used to generate approx-
imations to the probability distributions of the value of the
global optimum when K = 0 and K = N − 1 (Figure 2).

1We focus on the behaviour of the global maximum with
complementary results holding for the global minimum due
to the symmetry of the fitness distribution.

Comparisons of the probability distributions of the global
optima suggest that the mean of Wmax(N − 1) is greater
than the mean of Wmax(0) when fitness contributions are
uniform on [0, 1]. Suppose that rather than being uniform,
fitness contributions have an arbitrary distribution. Then,
we can show (Appendix A) that larger global maxima are
more likely to occur in landscapes where K = N − 1 than
in landscapes where K < N − 1. Equivalently, we say that
the global maximum for a landscape with K = N − 1 is
strictly stochastically greater than the global maximum of
any landscape with K < N − 1:

P [Wmax(J) > z] < P [Wmax(N − 1) > z] . (5)

where J < N − 1 and z ∈ [0, 1].
Stochastic ordering implies ordering of expectation, so it

is a direct consequence of these results that the expected
value of the global maximum is largest in the maximally
rugged case:

E [Wmax(J)] < E [Wmax(N − 1)] , (6)

where these expectations exist.
We conjecture that the global maximum is stochastically

non-decreasing in K for fixed N :

P [Wmax(J1) > z] ≤ P [Wmax(J2) > z] , J1 < J2. (7)

Our conjecture suggests that there is a hierarchy of dis-
tributions of global maxima, corresponding to the level of
epistatic interaction, K: the greater the value of K, the
greater the global maximum is likely to be. Proving (7) is
difficult in the case of arbitrary fitness contributions. How-
ever, Evans and Steinsaltz [3] establish that regardless of the
distribution of the fitness values, in the limit as N goes to
infinity the asymptotic global maximum is non-decreasing
in K; that is, if J1 < J2,

lim
N→∞

Wmax(J1) ≤ lim
N→∞

Wmax(J2),

which is consistent with the above conjecture. However,
when N is finite and excluding the case where fitness contri-
butions are Gaussian it remains necessary to use empirical
investigation. Computer simulations of the uniform case
indicate that the global maximum is indeed stochastically
increasing in K (Figure 3).

2.3 Asymptotic value of the global extrema
Here we derive the limiting value of the mode of the global

maximum, as N → ∞ and K = N − 1. Asymptotics of the
height of the global maximum have been considered by other
authors; Durrett and Limic [2] derive central limit theorems
for the height of the global maximum, and give a bound
for this height for all values of K in the limit as N → ∞,
in the case where fitness contributions are the negatives of
exponential random variables. Evans and Steinsaltz [3] de-
rive the limiting value of the global maximum for K = 1 in
the case where the fitness contributions have the exponen-
tial distribution, but more importantly, also demonstrate
that such limiting values exist for all fixed K for general
distributions of fitness contributions. Here, we address the
situation where W obeys the Gaussian approximation for
uniformly distributed fitness contributions.
Following Weinberger [16] we can establish that when the

Gaussian approximation (2) is valid and K = N − 1, the

globally maximal fitness must lie between 1
2
+
q

ln 2
6

and
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Figure 3: Empirical probability density functions for
the global optimum for N = 8, averaged over one
million landscapes for each value of K. The expected
global optimum increases as K increases.

1
2
+
q

ln 2
3
. It is known that the global maximum converges

in probability to a constant for fixed K [3], and hence that
the variance of the global maximum goes to zero as N be-
comes large. We determine a specific value for the peak of
the distribution of the global optimum as N → ∞.
The mode of the global optimum is the critical point, z∗,

of the distribution function given by (3) in the range [0, 1].
Since W converges in distribution to the constant value of
1
2
as N → ∞, limN→∞ FW (z) = 1 for z ≥ 1

2
, and so (3) can

be solved to find

z∗ =
1

2
+

s
1

12N
Ω

„
(2N − 1)2

2π

«
, (8)

for any N , where Ω is Lambert’s W function (see Appendix B).
Now, Ω(x) ∼ ln(x) as x → ∞, so

lim
N→∞

z∗ =
1

2
+

r
ln 2

6
≈ 0.84. (9)

As N → ∞ the variance of the distribution fWmax(N−1)

decreases while the peak of the distribution approaches
1
2
+
q

ln 2
6
, so that in the maximally rugged case the most

likely value of the global optimum approaches 0.84 as N gets
large. We note, in particular, that this corresponds to the
lower bound derived by Weinberger [16].

3. IMPLICATIONS FOR SEARCH
NK landscapes have been used both as a model of evolu-

tionary search and as test functions for computational search
and optimisation techniques. Here we examine some impli-
cations of the results from Section 2 for the performance of
search algorithms. One of the simplest empirical techniques
used to explore landscapes is an adaptive walk, performed by
a random mutation hill-climbing algorithm. This algorithm
starts at a randomly chosen point and proceeds until an op-
timum is found. At each step of the algorithm, the value
of a randomly chosen component is altered; if the change
results in a fitness increase it is retained, otherwise it is dis-
carded. The sequence of increasingly fitter points followed
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Figure 4: The fitness of the global, local and found
optima averaged over 1000 landscapes with N = 8.
As K increases, the global optimum increases while
the average fitness of the local optima decreases.
The average optima actually found by hill-climbing
tend to be greater than the average of all local
optima, because higher local optima tend to have
larger basins of attraction. For N = 8, the fittest
optima are found when K = 2.

by a hill-climber is known as an adaptive walk. This search
algorithm corresponds in principle to a minimal evolution-
ary algorithm: the (1+1) ES [1].
Computer simulations were used to obtain empirical val-

ues for the average heights of the local optima, the global
optimum, and the optimum found by a single hill-climber, on
landscapes with N = 8 (Figure 4). These values were calcu-
lated by first constructing 1000 landscapes then computing
averages of local and global optima as well as the perfor-
mance of all possible hill-climbers from all possible starting
points. As conjectured in Section 2, the expected height
of the global optimum increases with K, and this value is
largest when K = N −1. However, the average height of the
local optima decreases after K = 1, and the average height
of the optimum found by a single hill-climber decreases after
K = 2, in agreement with previous studies [8,17].
Furthermore, the average of the found optima is consis-

tently larger than the average of the local optima. Given
that a hill-climber starts at a random point, the tendency
to reach higher-than-average optima suggests that these op-
tima have larger basins of attraction, a feature of NK land-
scapes observed by Kauffman [8]. For K = 0 there is only
one optimum with a basin of size 2N , but as K increases,
the number of optima increases, so that the average size of
the basins of attraction must decrease. Thus, while the ex-
pected fitness of the global optimum increases with the level
of epistatic interaction, local optima become more numerous
with a lower average fitness, so that the optimum found by
a single hill-climber also tends to be lower.
Since a single hill-climber can only reach a limited number

of optima in a rugged landscape, a population of hill-climbers
is able to explore more of the landscape and find fitter op-
tima (Figure 5). Increasing the number of hill-climbers does
result in fitter optima being found, however the relative ad-

582



0 1 2 3 4 5 6 7
0.66

0.68

0.7

0.72

0.74

0.76

0.78

K

F
itn

es
s

P = 1

P = 2 

P = 4

P = 8

P = 16

P = 256 

Figure 5: The best fitness from a population of
P hill-climbers averaged over 1000 landscapes with
N = 8. As populations increase in size, the aver-
age best fitness found occurs in increasingly rugged
landscapes.

vantage of doubling the population size diminishes as the
population becomes larger. The diminishing return from
extra hill-climbers is due to the redundancy of an increas-
ing number of hill-climbers starting in the same basin of
attraction and hence reaching the same local optima. When
K = N − 1, the number of hill-climbers required to find
the global optimum approaches 2N , equal to the size of the
landscape.

4. CONCLUSION
When using a model such as the NK landscape in practical

situations, it is important to understand the expected prop-
erties of landscapes so that results can be related to known
quantities. In this study, questions about these properties
were addressed from two perspectives: the structure of the
landscapes, in particular the behaviour of the global opti-
mum, and the ability of adaptive walks to find the global
optimum.
It is well known that the height of optima found by evo-

lutionary search on NK landscapes decreases with increas-
ing K. However this fact does not reflect the behaviour of
the global optimum which achieves its highest value when
K = N − 1.
This study considered NK landscapes with uniform fitness

contributions: the central limit theorem was used to deter-
mine an approximate distribution for the landscape, and
the effect of N and K on this approximation was identified
(Section 2). It is conjectured that the global maximum is
stochastically non-decreasing in K and it has been proved
that the expected value of the global maximum is largest
when K = N − 1. The asymptotic value of the global op-
tima was found for K = N − 1 as N → ∞.
Search performance on landscapes with varying degrees

of ruggedness was investigated (Section 3). It was found
that, while it is possible for an adaptive walk to find the
global optima on increasingly rugged landscapes, the effort
required to find them increases dramatically.
It is well-known that increasing the number of epistatic

interactions creates landscapes with many more peaks of

lower average height, and that the greater complexity of
these landscapes makes search increasingly difficult. The
results in this paper add the additional insight that the very
highest peaks may be found in the most rugged landscapes,
scattered among the masses of low lying peaks. Any increase
in the level of epistasis has the potential to introduce higher
peaks, but simultaneously renders these peaks increasingly
difficult to find.
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APPENDIX

A. THE DISTRIBUTION OF Wmax(K)

The derivation of (5) relies on the concept of association,
which encompasses a particular notion of positive depen-
dence between random variables. The elements, X1, . . . , Xn,
of a random vector, X, are said to be associated if

Cov [g1(X), g2(X)] ≥ 0 (10)

where this quantity exists, for all functions g1 and g2 mono-
tonically non-decreasing in each of the n elements of X.
Independent random variables are associated.
Important properties of associated random variables in-

clude the following (see [5] and [15] for further details):

1. Suppose there is a sequence

gi = gi(X1, X2, . . . , Xn), i = 1, . . . , m.

where each gi(·) is a non-decreasing function of its argu-
ments. If X is a vector of associated random variables,
then the gi are also associated.

2. If the elements of X, X1, . . . , Xn, are associated ran-
dom variables,

P

"
n\

i=1

{Xi ≤ zi}
#
≥

nY
i=1

P [Xi ≤ zi] , (11)

for some vector of values z.

In order to utilise the properites of association, the fitness
landscape can be constructed as a 2N -element vector, WK .
It is consistent with the NK model that these values may
be generated from an N2N -element vector of fitness compo-
nents, f , by multiplying f by a 2N × N2N matrix of zeros
and ones, MK , and dividing by N . The elements of MK

indicate which elements of f contribute to which fitnesses
(when K < N − 1, some elements of f will not contribute to
any fitnesses). Hence, recalling (1), WK is a function of f :

WK(f) =
1

N
MKf . (12)

Because the fi are all independent, f is a vector of asso-
ciated random variables. Thus, since the rows of MK/N
form a sequence of nondecreasing functions of f , WK(f) is

also a vector of associated random variables (by Property 1,
above).
Note that the event that the maximum of the fitnesses is

less than some value, z, is the same as the event that all the
fitnesses are less than z. That is, for any J ≤ N − 1, and if
W1, . . . , W2N are the elements of WK ,

P [Wmax(J) ≤ z] = P

2
42N\

i=1

{Wi ≤ z}
3
5 (13)

Consequently, from (11) and (13), the global maxima for all
J ≤ N − 1 satisfy

P [Wmax(J) ≤ z] ≥
2NY
i=1

P [Wi ≤ z] (14)

where there is equality only when J = N − 1, in which case
the fitness of each point in the landscape must be indepen-
dent. Hence, the maximum of the fitnesses for K = N − 1,
Wmax(N − 1), is stochastically greater than Wmax(J), for
any J < N − 1, as stated by (5).

B. ASYMPTOTIC BEHAVIOUR OF THE
GLOBAL MAXIMUM

The most likely value of the global optimum is the peak
of the probability density function fWmax(N−1)(z). Hence,
the most likely value is z = z∗ such that

d

dz
fWmax(N−1)(z) = 0.

For finite z, this becomes

12N
`
z∗ − 1

2

´
FW (z∗) =

“
2N − 1

”
fW (z∗), (15)

and in this case the fitness W has a normal distribution
with mean 1

2
and variance 1/12N (these parameters come

from the normal approximation for fitness contributions uni-
formly distributed between 0 and 1). Thus

12N
`
z∗ − 1

2

´
FW (z∗) =

“
2N − 1

”r12N

2π
e−6N(z∗− 1

2 )
2

.

(16)

Rearranging and squaring both sides,

12N
`
z∗ − 1

2

´2
e12N(z∗− 1

2 )
2

=

„
2N − 1

FW (z∗)
√
2π

«2

, (17)

which is of the form AeA = B, and has the solution A =
Ω(B) where Ω is Lambert’s W-function. Hence, z∗ satisfies

12N
`
z∗ − 1

2

´2
= Ω

 `
2N − 1

´2
2πFW (z∗)2

!
. (18)

The argument of Ω in this expression goes to infinity as N
goes to infinity, but Ω(x) ∼ ln(x) as x → ∞. Then, from
(5), z∗ ≥ 1

2
and so FW (z∗) → 1 as N → ∞, and so

`
z∗ − 1

2

´2 ∼ ln 2

6
, (19)

from which (8) follows.
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